JAM

This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Senin, 06 Mei 2013

SISTEM PENCERNAAN PADA MANUSIA


A. Organ-Organ Pencernaan
Proses pencernaan merupakan suatu proses yang melibatkan
organ-organ pencernaan dan kelenjar-kelenjar pencernaan. Antara
proses dan organ-organ serta kelenjarnya merupakan kesatuan
sistem pencernaan. Sistem pencernaan berfungsi memecah bahan-
bahan makanan menjadi sari-sari makanan yang siap diserap dalam
tubuh.
Berdasarkan prosesnya, pencernaan makanan dapat dibedakan
menjadi dua macam seperti berikut.
1. Proses mekanis, yaitu pengunyahan oleh gigi dengan dibantu
lidah serta peremasan yang terjadi di lambung.
2. Proses kimiawi, yaitu pelarutan dan pemecahan makanan oleh
enzim-enzim pencernaan dengan mengubah makanan yang ber-
molekul besar menjadi molekul yang berukuran kecil.
Makanan mengalami proses pencernaan sejak makanan berada
di dalam mulut hingga proses pengeluaran sisa-sisa makanan hasil
pencernaan. Adapun proses pencernaan makanan meliputi hal-hal
berikut.
1. Ingesti: pemasukan makanan ke dalam tubuh melalui mulut.
2. Mastikasi: proses mengunyah makanan oleh gigi.
3. Deglutisi: proses menelan makanan di kerongkongan.
4. Digesti: pengubahan makanan menjadi molekul yang lebih
sederhana dengan bantuan enzim, terdapat di lambung.
5. Absorpsi: proses penyerapan, terjadi di usus halus.
6. Defekasi: pengeluaran sisa makanan yang sudah tidak berguna
untuk tubuh melalui anus.
Saat melakukan proses-proses pencernaan tersebut diperlukan
serangkaian alat-alat pencernaan sebagai berikut.
1. Mulut
Makanan pertama kali masuk ke dalam tubuh melalui mulut.
Makanan ini mulai dicerna secara mekanis dan kimiawi. Di dalam
mulut seperti Gambar 6.1, terdapat beberapa alat yang berperan
dalam proses pencernaan yaitu gigi, lidah, dan kelenjar ludah
(glandula salivales).
a. Gigi
Pada manusia, gigi berfungsi sebagai alat pencernaan
mekanis. Di sini, gigi membantu memecah makanan menjadi
potongan-potongan yang lebih kecil. Hal ini akan membantu
enzim-enzim pencernaan agar dapat mencerna makanan
lebih efisien dan cepat. Selama pertumbuhan dan per-
kembangan, gigi manusia mengalami perubahan, mulai dari
gigi susu dan gigi tetap (permanen). Gigi pertama pada bayi
dimulai saat usia 6 bulan. Gigi pertama ini disebut gigi susu
(dens lakteus). Pada anak berusia 6
tahun, gigi berjumlah 20, dengan susunan sebagai berikut.
1) Gigi seri (dens insisivus), berjumlah 8 buah, berfungsi
memotong makanan.
2) Gigi taring (dens caninus), berjumlah 4 buah, berfungsi
merobek makanan.
3) Gigi geraham kecil (dens premolare), berjumlah 8 buah,
berfungsi mengunyah makanan.
Struktur luar gigi terdiri
atas bagian-bagian berikut.
1) Mahkota gigi (corona) merupakan bagian yang tampak
dari luar.
2) Akar gigi (radix) merupakan bagian gigi yang tertanam
di dalam rahang.
3) Leher gigi (colum) merupakan bagian yang terlindung
oleh gusi.
Adapun penampang gigi dapat diperlihatkan bagian-
bagiannya sebagai berikut.
1) Email (glazur atau enamel) merupakan bagian terluar
gigi. Email merupakan struktur terkeras dari tubuh,
mengandung 97% kalsium dan 3% bahan organik.
2) Tulang gigi (dentin), berada di sebelah dalam email,
tersusun atas zat dentin.
3) Sumsum gigi (pulpa), merupakan bagian yang paling
dalam. Di pulpa terdapat kapiler, arteri, vena, dan saraf.
4) Semen merupakan pelapis bagian dentin yang masuk
ke rahang.
b. Lidah
Lidah dalam sistem pencernaan berfungsi untuk mem-
bantu mencampur dan menelan makanan, mempertahankan
makanan agar berada di antara gigi-gigi atas dan bawah
saat makanan dikunyah serta sebagai alat perasa makanan.
Lidah dapat berfungsi sebagai alat perasa makanan karena
mengandung banyak reseptor pengecap atau perasa. Lidah
tersusun atas otot lurik dan permukaannya dilapisi dengan
lapisan epitelium yang banyak mengandung kelenjar lendir
(mukosa).
c. Kelenjar ludah
Terdapat tiga pasang kelenjar ludah di dalam rongga mulut,
yaitu glandula parotis, glandula submaksilaris, dan glandula
sublingualis atau glandula submandibularis. Amati gambar 6.4
agar Anda mengenali letak ketiga kelenjar ludah tersebut.
Air ludah berperan penting dalam proses perubahan zat
makanan secara kimiawi yang terjadi di dalam mulut. Setelah
makanan dilumatkan secara mekanis oleh gigi, air ludah ber-
peran secara kimiawi dalam proses membasahi dan mem-
buat makanan menjadi lembek agar mudah ditelan. Ludah
terdiri atas air (99%) dan enzim amilase. Enzim ini meng-
uraikan pati dalam makanan menjadi gula sederhana
(glukosa dan maltosa). Makanan yang telah dilumatkan
dengan dikunyah dan dilunakkan di dalam mulut oleh air liur
disebut bolus. Bolus ini diteruskan ke sistem pencernaan
selanjutnya.
2. Kerongkongan (Esofagus)
Kerongkongan merupakan saluran panjang (± 25 cm) yang
tipis sebagai jalan bolus dari mulut menuju ke lambung. Fungsi
kerongkongan ini sebagai jalan bolus dari mulut menuju lambung.
Bagian dalam kerongkongan senantiasa basah oleh cairan
yang dihasilkan oleh kelenjar-kelenjar yang terdapat pada dinding
kerongkongan untuk menjaga agar bolus menjadi basah dan licin.
Keadaan ini akan mempermudah bolus bergerak melalui
kerongkongan menuju ke lambung. Bergeraknya bolus dari mulut
ke lambung melalui kerongkongan disebabkan adanya gerak
peristaltik pada otot dinding kerongkongan.
Gerak peristaltik dapat terjadi karena adanya kontraksi otot
secara bergantian pada lapisan otot yang tersusun secara me-
manjang dan melingkar. Proses gerak bolus di dalam kerongkongan
menuju lambung
Sebelum seseorang mulai makan, bagian belakang mulut (atas)
terbuka sebagai jalannya udara dari hidung. Di kerongkongan,
epiglotis yang seperti gelambir mengendur sehingga udara masuk
ke paru-paru. Ketika makan, makanan dikunyah dan ditelan masuk
ke dalam kerongkongan. Sewaktu makanan bergerak menuju
kerongkongan, langit-langit lunak beserta jaringan mirip gelambir
di bagian belakang mulut (uvula) terangkat ke atas dan menutup
saluran hidung. Sementara itu, sewaktu makanan bergerak ke arah
tutup trakea, epiglotis akan menutup sehingga makanan tidak masuk
trakea dan paru-paru tetapi makanan tetap masuk ke kerongkongan.
3. Lambung
Lambung merupakan saluran pencernaan yang berbentuk
seperti kantung, terletak di bawah sekat rongga badan. Dengan
mengamati Gambar 6.5, Anda dapat mengetahui bahwa lambung
terdiri atas tiga bagian sebagai berikut.
a. Bagian atas disebut kardiak, merupakan bagian yang ber-
batasan dengan esofagus.
b. Bagian tengah disebut fundus, merupakan bagian badan
atau tengah lambung.
c. Bagian bawah disebut pilorus, yang berbatasan dengan
usus halus.
Daerah perbatasan antara lambung dan kerongkongan ter-
dapat otot sfinkter kardiak yang secara refleks akan terbuka bila
ada bolus masuk. Sementara itu, di bagian pilorus terdapat otot
yang disebut sfinkter pilorus. Otot-otot lambung ini dapat ber-
kontraksi seperti halnya otot-otot kerongkongan. Apabila otot-
otot ini berkontraksi, otot-otot tersebut menekan, meremas, dan
mencampur bolus-bolus tersebut menjadi kimus (chyme).
Sementara itu, pencernaan secara kimiawi dibantu oleh
getah lambung. Getah ini dihasilkan oleh kelenjar yang terletak
pada dinding lambung di bawah fundus, sedangkan bagian dalam
dinding lambung menghasilkan lendir yang berfungsi melindungi
dinding lambung dari abrasi asam lambung, dan dapat beregenerasi
bila cidera. Getah lambung ini dapat dihasilkan akibat rangsangan
bolus saat masuk ke lambung. Getah lambung mengandung
bermacam-macam zat kimia, yang sebagian besar terdiri atas
air. Getah lambung juga mengandung HCl/asam lambung dan
enzim-enzim pencernaan seperti renin, pepsinogen, dan lipase.
Asam lambung memiliki beberapa fungsi berikut.
a. Mengaktifkan beberapa enzim yang terdapat dalam getah
lambung, misalnya pepsinogen diubah menjadi pepsin. Enzim
ini aktif memecah protein dalam bolus menjadi proteosa dan
pepton yang mempunyai ukuran molekul lebih kecil.
b. Menetralkan sifat alkali bolus yang datang dari rongga mulut.
c. Mengubah kelarutan garam mineral.
d. Mengasamkan lambung (pH turun 1–3), sehingga dapat
membunuh kuman yang ikut masuk ke lambung bersama
bolus.
e. Mengatur membuka dan menutupnya katup antara lambung
dan usus dua belas jari.
f. Merangsang sekresi getah usus.
Enzim renin dalam getah lambung berfungsi mengendapkan
kasein atau protein susu dari air susu. Lambung dalam suasana
asam dapat merangsang pepsinogen menjadi pepsin. Pepsin
ini berfungsi memecah molekul-molekul protein menjadi molekul-
molekul peptida. Sementara itu, lipase berfungsi mengubah
lemak menjadi asam lemak dan gliserol.
Selanjutnya, kimus akan masuk ke usus halus melalui suatu
sfinkter pilorus yang berukuran kecil. Apabila otot-otot ini
berkontraksi, maka kimus didorong masuk ke usus halus sedikit
demi sedikit.
4. Usus halus
Usus halus merupakan saluran berkelok-kelok yang
panjangnya sekitar 6–8 meter, lebar 25 mm dengan banyak
lipatan yang disebut vili atau jonjot-jonjot usus. Vili ini berfungsi
memperluas permukaan usus halus yang berpengaruh terhadap
proses penyerapan makanan. Lakukan eksperimen berikut untuk
mengetahui pengaruh lipatan terhadap proses penyerapan.
Usus halus terbagi menjadi tiga bagian seperti berikut:
a. duodenum (usus 12 jari), panjangnya ± 25 cm,
b. jejunum (usus kosong), panjangnya ± 7 m,
c. ileum (usus penyerapan), panjangnya ± 1 m.
Kimus yang berasal dari lambung mengandung molekul-
molekul pati yang telah dicernakan di mulut dan lambung,
molekul-molekul protein yang telah dicernakan di lambung,
molekul-molekul lemak yang belum dicernakan serta zat-zat lain.
Selama di usus halus, semua molekul pati dicernakan lebih
sempurna menjadi molekul-molekul glukosa. Sementara itu
molekul-molekul protein dicerna menjadi molekul-molekul asam
amino, dan semua molekul lemak dicerna menjadi molekul
gliserol dan asam lemak.
Pencernaan makanan yang terjadi di usus halus lebih banyak
bersifat kimiawi. Berbagai macam enzim diperlukan untuk
membantu proses pencernaan kimiawi ini.
Hati, pankreas, dan kelenjar-kelenjar yang terdapat di dalam
dinding usus halus mampu menghasilkan getah pencernaan.
Getah ini bercampur dengan kimus di dalam usus halus. Getah
pencernaan yang berperan di usus halus ini berupa cairan
empedu, getah pankreas, dan getah usus.
a. Cairan Empedu
Cairan empedu berwarna kuning kehijauan, 86% berupa
air, dan tidak mengandung enzim. Akan tetapi, mengandung
mucin dan garam empedu yang berperan dalam pencernaan
makanan. Cairan empedu tersusun atas bahan-bahan
berikut.
1) Air, berguna sebagai pelarut utama.
2) Mucin, berguna untuk membasahi dan melicinkan
duodenum agar tidak terjadi iritasi pada dinding usus.
3) Garam empedu, mengandung natrium karbonat yang
mengakibatkan empedu bersifat alkali. Garam empedu
juga berfungsi menurunkan tegangan permukaan lemak
dan air (mengemulsikan lemak).
Cairan ini dihasilkan oleh hati. Perhatikan Gambar 6.9.
Hati merupakan kelenjar pencernaan terbesar dalam tubuh
yang beratnya ± 2 kg. Dalam sistem pencernaan, hati
berfungsi sebagai pembentuk empedu, tempat penimbunan
zat-zat makanan dari darah dan penyerapan unsur besi dari
darah yang telah rusak. Selain itu, hati juga berfungsi
membentuk darah pada janin atau pada keadaan darurat,
pembentukan fibrinogen dan heparin untuk disalurkan ke
peredaran darah serta pengaturan suhu tubuh.
Empedu mengalir dari hati melalui saluran empedu dan
masuk ke usus halus. Dalam proses pencernaan ini, empedu
berperan dalam proses pencernaan lemak, yaitu sebelum
lemak dicernakan, lemak harus bereaksi dengan empedu
terlebih dahulu. Selain itu, cairan empedu berfungsi
menetralkan asam klorida dalam kimus, menghentikan
aktivitas pepsin pada protein, dan merangsang gerak
peristaltik usus.
b. Getah Pankreas
Getah pankreas dihasilkan di dalam organ pankreas.
Pankreas ini berperan sebagai kelenjar eksokrin yang
menghasilkan getah pankreas ke dalam saluran pencernaan
dan sebagai kelenjar endokrin yang menghasilkan hormon
insulin. Hormon ini dikeluarkan oleh sel-sel berbentuk pulau-
pulau yang disebut pulau-pulau langerhans. Insulin ini
berfungsi menjaga gula darah agar tetap normal dan
mencegah diabetes melitus.
Getah pankreas ini dari pankreas mengalir melalui
saluran pankreas masuk ke usus halus. Dalam pankreas
terdapat tiga macam enzim, yaitu lipase yang membantu dalam
pemecahan lemak, tripsin membantu dalam pemecahan pro-
tein, dan amilase membantu dalam pemecahan pati.
c. Getah Usus
Pada dinding usus halus banyak terdapat kelenjar yang
mampu menghasilkan getah usus. Getah usus mengandung
enzim-enzim seperti berikut.
1) Sukrase, berfungsi membantu mempercepat proses pe-
mecahan sukrosa menjadi glukosa dan fruktosa.
2) Maltase, berfungsi membantu mempercepat proses
pemecahan maltosa menjadi dua molekul glukosa.
3) Laktase, berfungsi membantu mempercepat proses
pemecahan laktosa menjadi glukosa dan galaktosa.
4) Enzim peptidase, berfungsi membantu mempercepat
proses pemecahan peptida menjadi asam amino.
Monosakarida, asam amino, asam lemak, dan gliserol
hasil pencernaan terakhir di usus halus mulai diabsorpsi atau
diserap melalui dinding usus halus terutama di bagian
jejunum dan ileum. Selain itu vitamin dan mineral juga
diserap. Vitamin-vitamin yang larut dalam lemak,
penyerapannya bersama dengan pelarutnya, sedangkan
vitamin yang larut dalam air penyerapannya dilakukan oleh
jonjot usus.
Penyerapan mineral sangat beragam berkaitan dengan
sifat kimia tiap-tiap mineral dan perbedaan struktur bagian-
bagian usus. Sepanjang usus halus sangat efisien dalam
penyerapan Na+, tetapi tidak untuk Cl
–, HCO3
–, dan ion-ion
bivalen. Ion K+
penyerapannya terbatas di jejunum.
Penyerapan Fe++ terjadi di duodenum dan jejunum.
Proses penyerapan di usus halus ini dilakukan oleh villi
(jonjot-jonjot usus). Di dalam villi ini terdapat pembuluh darah,
pembuluh kil (limfa), dan sel goblet. Di sini asam amino dan
glukosa diserap dan diangkut oleh darah menuju hati melalui
sistem vena porta hepatikus, sedangkan asam lemak
bereaksi terlebih dahulu dengan garam empedu membentuk
emulsi lemak. Emulsi lemak bersama gliserol diserap ke
dalam villi. Selanjutnya di dalam villi, asam lemak dilepaskan,
kemudian asam lemak mengikat gliserin dan membentuk
lemak kembali. Lemak yang terbentuk masuk ke tengah villi,
yaitu ke dalam pembuluh kil (limfa).
Melalui pembuluh kil, emulsi lemak menuju vena sedang-
kan garam empedu masuk ke dalam darah menuju hati dan
dibentuk lagi menjadi empedu. Bahan-bahan yang tidak dapat
diserap di usus halus akan didorong menuju usus besar
(kolon).
5. Usus besar
Usus besar atau kolon memiliki panjang ± 1 meter dan terdiri
atas kolon ascendens, kolon transversum, dan kolon descendens.
Di antara intestinum tenue (usus halus) dan intestinum
crassum (usus besar) terdapat sekum (usus buntu).
Pada ujung sekum terdapat tonjolan kecil yang disebut
appendiks (umbai cacing) yang berisi massa sel darah
putih yang berperan dalam imunitas.
Zat-zat sisa di dalam usus besar ini didorong ke
bagian belakang dengan gerakan peristaltik. Zat-zat sisa
ini masih mengandung banyak air dan garam mineral
yang diperlukan oleh tubuh. Air dan garam mineral
kemudian diabsorpsi kembali oleh dinding kolon, yaitu
kolon ascendens. Zat-zat sisa berada dalam usus besar
selama 1 sampai 4 hari. Pada saat itu terjadi proses
pembusukan terhadap zat-zat sisa dengan dibantu
bakteri Escherichia coli, yang mampu membentuk
vitamin K dan B12. Selanjutnya dengan gerakan
peristaltik, zat-zat sisa ini terdorong sedikit demi sedikit
ke saluran akhir dari pencernaan yaitu rektum dan
akhirnya keluar dengan proses defekasi melewati anus.
Defekasi diawali dengan terjadinya penggelembungan bagian
rektum akibat suatu rangsang yang disebut refleks gastrokolik.
Kemudian akibat adanya aktivitas kontraksi rektum dan otot
sfinkter yang berhubungan mengakibatkan terjadinya defekasi.
Di dalam usus besar ini semua proses pencernaan telah selesai
dengan sempurna.

sistem respirasi pada hewan


Alat respirasi adalah alat atau bagian tubuh tempat 02 dapat berdifusi masuk dan sebaliknya C02 dapat berdifusi keluar.
Alat respirasi pada hewan bervariasi antara hewan yang satu dengan hewan yang lain, ada yang berupa paru-paru, insang, kulit, trakea, dan paruparu buku, bahkan ada beberapa organisme yang belum mempunyai alat khusus sehingga oksigen berdifusi langsung dari lingkungan ke dalam tubuh, contohnya pada hewan bersel satu, porifera, dan coelenterata. Pada ketiga hewan ini oksigen berdifusi dari lingkungan melalui rongga tubuh.
Gbr. Berbagai macam alat respirasi pada hewan
1. Alat Respirasi pada Serangga
Corong hawa (trakea) adalah alat pernapasan yang dimiliki oleh serangga dan arthropoda lainnya. Pembuluh trakea bermuara pada lubang kecil yang ada di kerangka luar (eksoskeleton) yang disebut spirakel. Spirakel berbentuk pembuluh silindris yang berlapis zat kitin, dan terletak berpasangan pada setiap segmen tubuh. Spirakelmen punyai katup yang dikontrol oleh otot sehingga membuka dan menutupnya spirakel terjadi secara teratur. Pada umumnya spirakel terbuka selama serangga terbang, dan tertutup saat serangga beristirahat.
Gbr. Trakea pada serangga
Oksigen dari luar masuk lewat spirakel. Kemudian udara dari spirakel menujupembuluh-pembuluh trakea dan selanjutnya pembuluh trakea bercabang lagi menjadi cabang halus yang disebut trakeolus sehingga dapat mencapai seluruh jaringan dan alat tubuh bagian dalam. Trakeolus tidak berlapis kitin, berisi cairan, dan dibentuk oleh sel yang disebut trakeoblas. Pertukaran gas terjadi antara trakeolus dengan sel-sel tubuh. Trakeolus ini mempunyai fungsi yang sama dengan kapiler pada sistem pengangkutan (transportasi) pada vertebrata.
Mekanisme pernapasan pada serangga, misalnya belalang, adalah sebagai berikut :
Jika otot perut belalang berkontraksi maka trakea mexrupih sehingga udara kaya COZ keluar. Sebaliknya, jika otot perut belalang berelaksasi maka trakea kembali pada volume semula sehingga tekanan udara menjadi lebih kecil dibandingkan tekanan di luar sebagai akibatnya udara di luar yang kaya 02 masuk ke trakea.
Sistem trakea berfungsi mengangkut OZ dan mengedarkannya ke seluruh tubuh, dan sebaliknya mengangkut C02 basil respirasi untuk dikeluarkan dari tubuh. Dengan demikian, darah pada serangga hanya berfungsi mengangkut sari makanan dan bukan untuk mengangkut gas pernapasan.
Di bagian ujung trakeolus terdapat cairan sehingga udara mudah berdifusi kejaringan. Pada serangga air seperti jentik nyamuk udara diperoleh dengan menjulurkan tabung pernapasan ke perxnukaan air untuk mengambil udara.
Serangga air tertentu mempunyai gelembung udara sehingga dapat menyelam di air dalam waktu lama. Misalnya, kepik Notonecta sp.mempunyai gelembung udara di organ yang menyerupai rambut pada permukaan ventral. Selama menyelam, O2 dalam gelembung dipindahkan melalui sistem trakea ke sel-sel pernapasan.
Selain itu, ada pula serangga yang mempunyai insang trakea yang berfungsi menyerap udara dari air, atau pengambilan udara melalui cabang-cabang halus serupa insang. Selanjutnya dari cabang halus ini oksigen diedarkan melalui pembuluh trakea.
2. Alat Pernapasan pada Kalajengking dan Laba-laba
Kalajengking dan laba-laba besar (Arachnida) yang hidup di darat memiliki alat pernapasan berupa paru-paru buku, sedangkan jika hidup di air bernapas dengan insang buku.
Paru-paru buku memiliki gulungan yang berasal dari invaginasi perut. Masing-masing paru-paru buku ini memiliki lembaran-lembaran tipis (lamela) yang tersusun berjajar. Paruparu buku ini juga memiliki spirakel tempat masuknya oksigen dari luar.

Keluar masuknya udara disebabkan oleh gerakan otot yang terjadi secara teratur.
Gbr. Irisan melintanK paru-paru buku
pada laba-laba
Baik insang buku maupun paru-paru buku keduanya mempunyai fungsi yang sama seperti fungsi paru-paru pada vertebrata.
3. Alat Pernapasan pada Ikan
Insang dimiliki oleh jenis ikan (pisces). Insang berbentuk lembaran-lembaran tipis berwarna merah muda dan selalu lembap. Bagian terluar dare insang berhubungan dengan air, sedangkan bagian dalam berhubungan erat dengan kapiler-kapiler darah. Tiap lembaran insang terdiri dare sepasang filamen,dan tiap filamen mengandung banyak lapisan tipis (lamela). Pada filamen terdapat pembuluh darah yang memiliki banyak kapiler sehingga memungkinkan OZ berdifusi masuk dan CO2 berdifusi keluar. Insang pada ikan bertulang sejati ditutupi oleh tutup insang yang disebut operkulum,sedangkan insang pada ikan bertulang rawan tidak ditutupi oleh operkulum.
Insang tidak saja berfungsi sebagai alat pernapasan tetapi dapat pula berfungsi sebagai alat ekskresi garam-garam, penyaring makanan, alat pertukaran ion, dan osmoregulator. Beberapa jenis ikan mempunyai labirinyang merupakan perluasan ke atas dari insang dan membentuk lipatan-lipatan sehingga merupakan rongga-rongga tidak teratur. Labirin ini berfungsi menyimpan cadangan 02 sehingga ikan tahan pada kondisi yang kekurangan 02. Contoh ikan yang mempunyai labirin adalah: ikan gabus dan ikan lele. Untuk menyimpan cadangan 02, selain dengan labirin, ikan mempunyai gelembung renang yang terletak di dekat punggung.
Mekanisme pernapasan pada ikan melalui 2 tahap, yakni inspirasi dan ekspirasi. Pada fase inspirasi, 02 dari air masuk ke dalam insang kemudian 02 diikat oleh kapiler darah untuk dibawa ke jaringan-jaringan yang membutuhkan. Sebaliknya pada fase ekspirasi, C02 yang dibawa oleh darah dari jaringan akan bermuara ke insang dan dari insang diekskresikan keluar tubuh.
Selain dimiliki oleh ikan, insang juga dimiliki oleh katak pada fase berudu, yaitu insang luar. Hewan yang memiliki insang luar sepanjang hidupnya adalah salamander.
4. Alat Pernapasan pada Katak
Pada katak, oksigen berdifusi lewat selaput rongga mulut, kulit, dan paru-paru. Kecuali pada fase berudu bernapas dengan insang karena hidupnya di air. Selaput rongga mulut dapat berfungsi sebagai alat pernapasan karma tipis dan banyak terdapat kapiler yang bermuara di tempat itu. Pada saat terjadi gerakan rongga mulut dan faring, Iubang hidung terbuka dan glotis tertutup sehingga udara berada di rongga mulut dan berdifusi masuk melalui selaput rongga mulut yang tipis. Selain bernapas dengan selaput rongga mulut, katak bernapas pula dengan kulit, ini dimungkinkan karma kulitnya selalu dalam keadaan basah dan mengandung banyak kapiler sehingga gas pernapasan mudah berdifusi. Oksigen yang masuk lewat kulit akan melewati vena kulit (vena kutanea) kemudian dibawa ke jantung untuk diedarkan ke seluruh tubuh. Sebaliknya karbon dioksida dari jaringan akan di bawa ke jantung, dari jantung dipompa ke kulit dan paru-paru lewat arteri kulit pare-paru (arteri pulmo kutanea). Dengan demikian pertukaran oksigen dan karbon dioksida dapat terjadi di kulit.
Selain bernapas dengan selaput rongga mulut dan kulit, katak bernapas juga dengan paruparu walaupun paru-parunya belum sebaik paru-paru mamalia.
Katak mempunyai sepasang paru-paru yang berbentuk gelembung tempat bermuaranya kapiler darah. Permukaan paru-paru diperbesar oleh adanya bentuk- bentuk seperti kantung sehingga gas pernapasan dapat berdifusi. Paru-paru dengan rongga mulut dihubungkan oleh bronkus yang pendek.
Gbr. alat pernafasan katak
Gbr. Mekanisme pernafasan katak
Dalam paru-paru terjadi mekanisme inspirasi dan ekspirasi yang keduanya terjadi saat mulut tertutup. Fase inspirasi adalah saat udara (kaya oksigen) yang masuk lewat selaput rongga mulut dan kulit berdifusi pada gelembung-gelembung di paru-paru. Mekanisme inspirasi adalah sebagai berikut. Otot Sternohioideusberkonstraksi sehingga rongga mulut membesar, akibatnya oksigen masuk melalui koane.
Setelah itu koane menutup dan otot rahang bawah dan otot geniohioideus berkontraksi sehingga rongga mulut mengecil. Mengecilnya rongga mulut mendorong oksigen masuk ke paru-paru lewat celah-celah. Dalam paru-paru terjadi pertukaran gas, oksigen diikat oleh darah yang berada dalam kapiler dinding paru-paru dan sebaliknya, karbon dioksida dilepaskan ke lingkungan. Mekanisme ekspirasi adalah sebagai berikut. Otot-otot perut dan sternohioideus berkontraksi sehingga udara dalam paru-paru tertekan keluar dan masuk ke dalam rongga mulut. Celah tekak menutup dan sebaliknya koane membuka. Bersamaan dengan itu, otot rahang bawah berkontraksi yang juga diikuti dengan berkontraksinya geniohioideus sehingga rongga mulut mengecil. Dengan mengecilnya rongga mulut maka udara yang kaya karbon dioksida keluar.
5. Alat Pernapasan pada Reptilia
Paru-paru reptilia berada dalam rongga dada dan dilindungi oleh tulang rusuk. Paru-paru reptilia lebih sederhana, hanya dengan beberapa lipatan dinding yang berfungsi memperbesar permukaan pertukaran gas. Pada reptilia pertukaran gas tidak efektif.
Pada kadal, kura-kura, dan buaya paru-paru lebih kompleks, dengan beberapa belahanbelahan yang membuat paru-parunya bertekstur seperti spon. Paru-paru pada beberapa jenis kadal misalnya bunglon Afrika mempunyai pundi-pundi hawa cadangan yang memungkinkan hewan tersebut melayang di udara.
6. Alat Pernapasan pada Burung
Pada burung, tempat berdifusinya gas pernapasan hanya terjadi di paru-paru. Paru-paru burung berjumlah sepasang dan terletak dalam rongga dada yang dilindungi oleh tulang rusuk.
Jalur pernapasan pada burung berawal di lubang hidung. Pada tempat ini, udara masuk kemudian diteruskan pada celah tekak yang terdapat pada dasar faring yang menghubungkan trakea. Trakeanya panjang berupa pipa bertulang rawan yang berbentuk cincin, dan bagian akhir trakea bercabang menjadi dua bagian, yaitu bronkus kanan dan bronkus kiri. Dalam bronkus pada pangkal trakea terdapat sirink yang pada bagian dalamnya terdapat lipatan-lipatan berupa selaput yang dapat bergetar. Bergetarnya selaput itu menimbulkan suara. Bronkus bercabang lagi menjadi mesobronkus yangmerupakan bronkus sekunder dan dapat dibedakan menjadi ventrobronkus (di bagian ventral) dan dorsobronkus ( di bagian dorsal). Ventrobronkus dihubungkan dengan dorsobronkus, oleh banyak parabronkus (100 atau lebih).
Parabronkus berupa tabung tabung kecil. Di parabronkus bermuara banyak kapiler sehingga memungkinkan udara berdifusi. Selain paru-paru, burung memiliki 8 atau 9 perluasan paru-paru atau pundi-pundi hawa (sakus pneumatikus) yang menyebar sampai ke perut, leher, dan sayap. Pundi-pundi hawa berhubungan dengan paru-paru dan berselaput tipis. Di pundi-pundi hawa tidak terjadi difusi gas pernapasan; pundi-pundi hawa hanya berfungsi sebagai penyimpan cadangan oksigen dan meringankan tubuh. Karena adanya pundi-pundi hawa maka pernapasan pada burung menjadi efisien. Pundi-pundi hawa terdapat di pangkal leher (servikal), ruang dada bagian depan (toraks anterior), antara tulang selangka (korakoid),ruang dada bagian belakang (toraks posterior), dan di rongga perut(kantong udara abdominal).
Masuknya udara yang kaya oksigen ke paru-paru (inspirasi) disebabkan adanya kontraksi otot antartulang rusuk (interkostal) sehingga tulang rusuk bergerak keluar dan tulang dada bergerak ke bawah. Atau dengan kata lain, burung mengisap udara dengan cara memperbesar rongga dadanya sehingga tekanan udara di dalam rongga dada menjadi kecil yang mengakibatkan masuknya udara luar. Udara luar yang masuk sebagian kecil tinggal di paru-paru dan sebagian besar akan diteruskan ke pundi- pundi hawa sebagai cadangan udara.
Udara pada pundi-pundi hawa dimanfaatkan hanya pada saat udara (OZ) di paruparu berkurang, yakni saat burung sedang mengepakkan sayapnya. Saat sayap mengepak atau diangkat ke atas maka kantung hawa di tulang korakoid terjepit sehingga oksigen pada tempat itu masuk ke paru-paru. Sebaliknya, ekspirasi terjadi apabila otot interkostal relaksasi maka tulang rusuk dan tulang dada kembali ke posisi semula, sehingga rongga dada mengecil dan tekanan menjadi lebih besar dari tekanan di udara luar akibatnya udara dari paru-paru yang kaya karbon dioksida keluar. Bersamaan dengan mengecilnya rongga dada, udara dari kantung hawa masuk ke paru-paru dan terjadi pelepasan oksigen dalam pembuluh kapiler di paru-paru. Jadi, pelepasan oksigen di paru-paru dapat terjadi pada saat ekspirasi maupun inspirasi.
Bagan pernapasan pada burung di saat hinggap adalah sebagai berikut.
Burung mengisap udara Þ udara mengalir lewat bronkus ke pundi-pundi hawa bagian belakang Þ bersamaan dengan itu udara yang sudah ada di paru-paru mengalir ke pundipundi hawa Þ udara di pundi-pundi belakang mengalir ke paru-paru Þ udara menuju pundipundi hawa depan.

Kecepatan respirasi pada berbagai hewan berbeda bergantung dari berbagai hal, antara lain, aktifitas, kesehatan, dan bobot tubuh.

Rekayasa genetika


Rekayasa genetika adalah prosedur dasar dalam menghasilkan suatu produk bioteknologi. Secara umum, rekayasa genetika melakukan modifikasi pada mahluk hidup melalui transfer gen dari suatu organisme ke organisme lain. Prosedur rekayasa genetika secara umum meliputi

  1. Isolasi gen.
  2. Memodifikasi gen sehingga fungsi biologisnya lebih baik.
  3. Mentrasfer gen tersebut ke organisme baru.
  4. Membentuk produk organisme transgenik.
Prosedur pembentukan organisme transgenic ada dua, yaitu:
  1. Melalui proses introduksi gen
  2. Melalui proses mutagenesis

[sunting]Proses introduksi gen

Beberapa langkah dasar proses introduksi gen adalah[2]:
  1. Membentuk sekuen gen yang diinginkan yang ditandai dengan penanda yang spesifik
  2. Mentransformasi sekuen gen yang sudah ditandai ke jaringan
  3. Mengkultur jaringan yang sudah mengandung gen yang ditransformasikan
  4. Uji coba kultur tersebut di lapangan

[sunting]Mutagenesis

Memodifikasi gen pada organisme tersebut dengan mengganti sekuen basa nitrogen pada DNA yang ada untuk diganti dengan basa nitrogen lain sehingga terjadi perubahan sifat pada organisme tersebut, contoh: semula sifatnya tidak tahan hama menjadi tahan hama. Agen mutagenesis ini biasanya dikenal dengan istilah mutagen. Beberapa contoh mutagen yang umum dipakai adalah sinar gamma (mutagen fisika) dan etil metana sulfonat (mutagen kimia).[5]

[sunting]Human Genome Project

Human Genome Project adalah usaha international yang dimulai pada tahun 1990 untuk mengidentifikasi semua gen (genom) yang terdapat pada DNA dalam sel manusia dan memetakan lokasinya pada tiap kromosom manusia yang berjumlah 24.[12] Proyek ini memiliki potensi tak terbatas untuk perkembangan di bidang pendekatan diagnostik untuk mendeteksi penyakit dan pendekatan molekuler untuk menyembuhkan penyakit genetik manusia [12]

[sunting]Aplikasi di Bidang Medis

Aplikasi dari bioteknologi medis sudah berlangsung lama, sebagai contoh 100 tahun lalu lintah umum digunakan untuk merawat penyakit dengan cara membiarkan lintah menyedot darah pasien bloodletting| bloodletting. Hal ini dipercaya dapat menghilangkan darah yang sudah terjangkit penyakit. Pada zaman sekarang, lintah ditemukan memiliki enzim pada kelenjar salivanya yang dapat menghancurkan gumpalan darah yang bila tidak dihancurkan dapat menyebabkan strok dan serangan jantung. Selain contoh tersebut, terdapat banyak aplikasi bioteknologi di bidang medis sebagai berikut.

[sunting]Sel Punca

Sel punca adalah jenis sel khusus dengan kemampuan membentuk ulang dirinya dan dalam saat yang bersamaan membentuk sel yang terspesialisasi. Aplikasi Terapeutik Sel Stem Embrionik pada Berbagai Penyakit Degeneratif. Dalam Cermin Dunia Kedokteran, meskipun kebanyakan sel dalam tubuh seperti jantung maupun hati telah terbentuk khusus untuk memenuhi fungsi tertentu, stem cell selalu berada dalam keadaan tidak terdiferensiasi sampai ada sinyal tertentu yang mengarahkannya berdiferensiasi menjadi sel jenis tertentu. Kemampuannya untuk berproliferasi bersamaan dengan kemampuannya berdiferensiasi menjadi jenis sel tertentu inilah yang membuatnya unik . Karakteristik biologis dan diferensiasi stem cell fokus pada mesenchymal stem cell. Cermin Dunia Kedokteran
Aplikasi dari sel punca diantaranya adalah pengobatan infark jantung yaitu menggunakan sel punca yang berasal dari sumsum tulang untuk mengganti sel-sel pembuluh yang rusak (neovaskularisasi). Aplikasi terapeutik sel stem embrionik pada berbagai penyakit degeneratif. Cermin Dunia Kedokteran . Selain itu, sel punca diduga dapat digunakan untuk pengobatan diabetes tipe I dengan cara mengganti sel pankreas yang sudah rusak dengan sel pankreas hasil diferensiasi sel punca. Hal ini dilakukan untuk menghindari reaksi penolakan yang dapat terjadi seperti pada transplantasi pankreas dari binatang.

Asal Mula Makhluk Hidup


Secara umum Teori asal usul kehidupan ada dua, yaitu abiogenesis ( makhluk hidup berasal dari benda mati) dan biogenesis (makhluk hidup brasal dari makhluk hidup juga).
1. Teori Abiogenesis
Pemuka paham ini adalah seorang bangsa Yunani, yaitu Aristoteles (394-322 sebelum masehi). Teorinya mengatakan kalau makhluk hidup yang pertama menghuni bumi ini adalah berasal dari benda mati. Timbulnya makhluk hidup pertama itu terjadi secara spontan karena adanya gaya hidup. Oleh karena itu paham abiogenesis disebut juga pahamgeneratio spontanea. Paham ini bertahan cukup lama, yaitu semenjak zaman Yunani kuno (ratusan tahun sebelum masehi) hingga pertengahan abad ke 17.
Pada pertengahan abad ke 17 paham ini seolah-olah diperkuat oleh antonie vanLeeuweunhoek, seorang bangsa Belanda. Dia menemukan mikroskop sederhana yang dapat digunakan untuk melihat jentik-jentik (makhluk hidup) amat kecil pada setetes rendaman air jerami. Hal inilah yang seolah-olah memperkuat paham abiogenesis.
2. Teori Biogenesis
Setelah bertahan cukup lama, paham abiogenesis mulai diragukan. Beberapa ahli kemudian mengemukakan paham biogenesis. Beberapa ahli yang mengemukakan paham biogenesisantara lain :

a. Francesco Redi
 (Italia, 1626-1697)
            Redi menentang teori abiogenesis dengan mengadakan percobaan menggunakan toples dan daging. Toples 1 diisi daging yang ditutup rapat-rapat. Toples 2 diisi daging dan ditutup kain kasa. Toples 3 diiisi daging dan dibuka. Ketiga toples ini dibiarkan beberapa hari. Dari hasil percobaan ini ia mengambil kesimpulan sebagai berikut : Larva (kehidupan) bukan berasal dari daging yang membusuk tetapi berasal dari lalat yang dapat masuk ke dalam tabung dan bertelur pada keratin daging.

b. Lazzaro Spallanzani
 (Italia, 1729-1799)
            Spallanzani menentang pendapat John Needham (penganut paham abiogenesis), menurutnya kehidupan yang terjadi pada air kaldu disebabkan oleh pemanasan yang tidak sempurna. Kesimpulan percobaan spallanzani adalah : pada tabung terbuka terdapat kehidupan berasal dari udara, pada tabung tertutup tidak terdapat kehidupan, hal ini membuktikan bahwa kehidupan bukan dari air kaldu.


c. Louis Pasteur (Perancis, 1822-1895)
            Louis Pasteur melakukan percobaan yang menyempurnakan percobaanSpalanzaniPasteur mlakukan percobaan menggunakan labu yang penutupnya leher angsa, bertujuan untuk membuktikan bahwa mikroorganisme terdapat di udara bersama dengan debu. Hasil percobaannya adalah sebagai berikut :
- Mikroorganisme yang tumbuh bukan berasal dari benda mati (cairan) tetapi dari mikroorganisme yang terdapat di udara
- Jasad renik terdapat di udara bersama dengan debu
Dari percobaan ini, gugurlah teori abiogenesis tersebut.
Pasteur terkenal dengan semboyannya “Omne vivum ex ovo, omne ovum ex vivo” yang mengandung pengertian : kehidupan berasal dari telur dan telur dihasilkan makhluk hidup, makhluk hidup sekarang berasal dari makhluk hidup sebelumnya, makhluk hidup berasal dari makhluk hidup juga.
Di samping dua teori di atas, masih ada lagi beberapa teori tentang asal usul kehidupan. Beberapa teori yang dikembangkan ilmuan antara lain :
A. teori kreasi khas, yang menyatakan bahwa kehidupan diciptakan oleh zat supranatural ( gaib) pada saat yang istimewa
B. Teori kosmozoan, yang menyatakan bahwa kehidupan yang ada di planet ini berasal dari mana saja
C. Teori evolusi biokimia, yang menyatakan bahwa kehidupan ini muncul berdasarkan hukum fisika, kimia, dan biologi
D. Teori keadaan mantap, menyatakan bahwa kehidupan tidak berasal usul.
Beberapa ilmuan yang membuktikan teori evolusi kimia antara lain Harold Urey, Stanley Miller, dan Alexander Oparin

Teori Harold Urey, menurutnya zat hidup yang pertama kali mempunyai susunan menyerupai virus saat ini. Zat hidup tersebut mengalami perkembangan menjadi berbagai jenis makhluk hidup. Urey berpendapat bahwa kehidupan terjadi pertamakali di udara (atmosfer). Pada saat tertentu dalam sejarah perkembangan terbentuk atmosfer yang kaya akan molekul- molekul CH4, NH3, H2, H2O. karena adanya loncatan listrik akibat halilintar dan sinar kosmik terjadi asam amino yang memungkinkan terjadi kehidupan.
Eksperimen Stanley miller, Stanley Miller adalah murid Harold Urey yang juga tertarik terhadap masalah asal usul kehidupan. Dia melakukan percobaan untuk menguji hipotesisHarold Urey. Dari hasil eksperimennya Miller dapat memberikan petunjuk bahwa satuan-satuan kompleks di dalam system kehidupan seperti lipida, karbohidrat, asam amino, protein, nukleotida dan lain-lain dapat terbentuk dalam kondisi abiotik.
Teori Evolusi Biologi Oparin, dia berpendapat bahwa kehidupan pertama terjadi di cekungan pantai dengan bahan-bahan timbunan senyawa organic dari lautan. Timbunan senyawa organic ini disebut sop purba atau sop primordial.

Menurut Teori Moore menyatakan bahwa hidup dapat muncul dari kondisi yang cocok dari bahan anorganik pada saat bumi mengalami pendinginan melalui suatu proses dalam larutannya yang labil. Bila fase keadaan kompleks itu muncul, terbentuklah makhluk hidup.
Teori Allen menyatakan bahwa Energi matahari diserap oleh zat besi yang lembab dan menimbulkan pengaturan atom dari materi-materi. Interaksi N,C,H,O, dan S dalam air membentuk protoplasma benda hidup.
Teori Pfluger menyatakan bahwa bumi berasal dari materi yang sangat panas sekali, kemudian bahan yang mengandung karbon(C), nitrogen(N) dan senyawa cyanogen(CN) membentuk protein pembentuk protoplasma yang akan menjadi makhluk hidup, dan masih banyak teori lainnya.
Teori evolusi yang menyatakan bahwa nenek moyang kita adalah berasal dari kera, seolah-olah telah menjadi kebenaran di seluruh lapisan masyarakat, mahluk hidup dari tingkat yang sangat sederhana yaitu mahluk bersel satu, parasit, tumbuh-tumbuhan, aneka hewan, sampai manusia merupakan badan-badan material yang telah diciptakan secara utuh yang siap dihuni oleh sang roh. Sang roh akan mendapat badan material tertentu berdasarkan karma dan kesadaran yang dimilikinya pada kehidupan yang lalu.
Pandangan Sains dan Vedanta Pendahuluan Almarhum dr. Jerome Lejeune adalah ahli genetik yang dikenal masyarakat internasional. Dr. Lejeune berhasil menemukan kelainan genetik Sindroma Down (Down’s Syndrome) yang disebabkan oleh kromosom ekstra (Trisomy 21). Dr. Lejeune telah menyumbangkan banyak penelitian genetik untuk mencegah dan mengobati Trisomy 21. Berikut ini adalah pendapat yang diberikannya di depan sub-komite Hukum Senat Amerika. Kapan persisnya kehidupan dimulai ? Saya akan mencoba memberikan jawaban yang paling mengena untuk pertanyaan ini berdasarkan ilmu pengetahuan. Ilmu biologi modern mengajarkan pada kita bahwa persatuan antara para leluhur dengan keturunannya terjadi karena adanya mata rantai yang berkesinambungan dari pembuahan sel wanita (indung telur) oleh sel pria (sperma) yang membuat anggota baru dari sebuah keluarga hadir di dunia. Kehidupan mempunyai sejarah yang amat sangat panjang, tetapi setiap individu memiliki permulaan yang rapih, yaitu saat terjadinya pembuahan. Mata rantai yang dimaksud di atas adalah DNA.
Dalam setiap sel reproduksi yang bentuknya seperti pita sepanjang kira-kira satu meter, terdapat bagian-bagian (23 bagian pada manusia). Setiap bagian digulung dan dibungkus dengan hati-hati (seperti pita magnetik dalam sebuah kaset mini). Jika kita melihatnya dibawah sebuah mikroskop, bentuknya mirip sebuah batang, itulah yang dinamakan kromosom. Tak lama setelah 23 kromosom seorang pria bertemu dengan 23 kromosom seorang wanita dalam sebuah pembuahan, semua informasi genetik dari seseorang yang belum dilahirkan telah diperoleh. Seperti sebuah pita magnetik tadi, yang jika kita putar dalam tape recorder akan mengeluarkan bunyi simfoni yang indah, kehidupan baru mulai menyatakan siapa diati kesehatan yang sempurna – maka seorang pakar biologi akan mengatakan bahwa ia perlu keadaan jasmani yang sehat, hidup dengan memperhatikan kesehatan seluruh anggota tubuhnya – sedang seorang pakar hukum mengatakan bahwa ia memerlukan kepatuhan akan hukum-hukum yang berlaku, sehingga ia tidak terseret dalam perkara-perkara yang menyulitkan hidupnya.
Alam bekerja seperti itu. Kromosom-kromosom adalah tabulasi hukum kehidupan, saat mereka bersatu membentuk mahluk baru (maksudnya pembuahan), kromosom-kromosom itu telah menoktahkan keadaan seseorang. Teori Ilmiah Asal Mula Kehidupan Evolusi Molekuler
Ketika tubuh organisme hidup dianalisa secara kimiawi, kita menemukan bahwa mereka secara primer tersusun dari empat elemen (H,O,N dan C). Bahan kimia seperti air, protein, lemak, karbohidrat dan asam nukleida menyusun 95% dari seluruh molekul yang ada di tubuh organisme. Kemudian, mereka mencoba untuk menyimpulkan bahwa kehidupan bisa jadi merupakan produk dari reaksi kimia yang kompleks. Berdasarkan pada konsep ini, semua riset secara praktis mengenai asal usul kehidupan difokuskan pada kemungkinan mensintesis molekul besar dan kecil yang menyusun tubuh organisme. Tapi apakah molekul DNA atau RNA adalah kehidupan? Akankah kombinasi dari sintesis biomolekul menuju kepada kehidupan? Jika kehidupan terbuat dari bahan kimia, apa bedanya antara kehidupan dan kematian?
Berdasarkan pada biologi modern, unit terkecil dari kehidupan disebut sel. semua mahluk hidup mempunyai sel. Organisme seperti bakteri dan protozoa mempunyai sel tunggal sedangkan bentuk makhluk hidup yang lebih tinggi seperti manusia mempunyai milyaran sel. Sel terdiri dari banyak kimia inorganik sederhana seperti air dan ion inorganik. Sedangkan, molekul organik yang kompleks seperti protein, RNA (Asam Ribonukleat), DNA (Asam Deoxyribonukleat), lemak, dan lain-lain, menyediakan sebagian besar fungsi biologis yang penting bagi sel. Para ilmuwan, di bidang biologi, mempelajari kehidupan dan asal -usulnya dengan istilah biomolekul ini. Mereka berusaha untuk mengembang-biakkan sel dengan mengkombinasikan biomolekul ini.
Mana yang lebih dahulu ada ; DNA atau protein? Pada tahun 1953, Watson dan Crick mengajukan model doubel Helix untuk struktur DNA. Penemuan mereka membantu untuk menjelaskan bagaimana materi genetika digandakan di dalam sel, informasi genetika berasal dari DNA, di dalam nukleus dari masing-masing sel, ke RNA, yang membawa informasi keluar dari nukleus kedalam tubuh sel dan Institut Bhaktivedanta Indonesia menggunakan instruksi yang di kodekan didalamnya untuk menghasilkan suatu protein (yang dapat berupa enzim dan juga merupakan kerangka struktur dari sel). Sedangkan duplikasi DNA membutuhkan sejumlah enzim yang mempercepat reaksi-reaksi tersebut. Dan enzim adalah protein itu sendiri, produk akhir dari informasi yang dikodekan didalam DNA. Dengan kata lain, protein dibutuhkan untuk sintesis DNA dan DNA dibutuhkan untuk sintesis protein. Jadi, bagaimana bisa sel hidup pertama dengan DNA-berdasarkan biologi molekuler telah membentuk proses kimiawi secara spontan pada awal kehidupan di bumi? Ini seperti halnya masalah telur dan ayam dari evolusi kehidupan yang berasal dari bahan kimia – “mana yang datang lebih dahulu – DNA atau molekul protein?” Teori dunia RNA.
Pada akhir tahun 1960-an beberapa pakar biologi termasuk Crick, Carl Woese dan Leslie Orgel menyatakan bahwa molekul purba bukanlah DNA ataupun protein melainkan RNA. RNA, yang mereka nyatakan, mungkin sudah mempercepat reaksi yang diperlukan untuk replikasi seiring dengan penyediaan informasi genetika yang diperlukan untuk menggandakannya sendiri. Penggandaan RNA sendiri berdasarkan sistim yang akan timbul pertama kali, dan DNA serta protein akan ditambahkan kemudian. DNA dapat berevolusi dari RNA dan kemudian menjadi lebih stabil, mengambil peranan RNA sebagai penjaga keturunan.Ide ini kemudian mendapatkan dukungan pada awal tahun 1980-an dari penemuan Thomas Cech dan Sidney Altman mengenai sejenis RNA yang sebagai reaksi katalisasi. Molekul RNA yang mengkatalisasi reaksi ini kemudian diberi istilah dengan “ribozymes”. Pada tahun 1986, Walter Gilbert, dalam sebuah artikel dalam majalah Nature, melukiskan dunia purba sebagai “dunia RNA” dimana molekul RNA mengkatalisasi sintesis mereka sendiri. Sejak itu kemudian, istilah “dunia RNA” menjadi hipotesis umum bahwa pertama adalah RNA, kemudian DNA dan protein dan para peneliti terus menemukan fungsi baru.
Teori evolusi Darwin secara arkeologis, genetika dan biomolekuler tidak terbukti, bahkan Darwin mengatakan bahwa teorinya masih sangat lemah dan perlu pembuktian dimasa mendatang. Kelemahannya adalah karena tidak menyertakan pemahaman tentang sang roh dalam kajian tersebut. Sebenarnya bukanlah evolusi fisik yang terjadi tetapi evolusi spiritual yang akan menentukan badan-badan material yang didapat. Namun teori Darwin sangat didukung oleh paham materialis-atheis seperti ; Marx, Plank, S Freud dan lainnya.
Suatu benda dikatakan hidup jika mampu menunjukkan ciri-ciri kehidupan yaitu : memerlukan nutrisi, bergerak, bernafas, tumbuh dan berkembang, melakukan ekskresi/ pengeluaran sisa-sisa metabolism, berkembang biak, peka terhadap rangsangan (iritabilita), koordinasi, dan adaptasi.

Informasi Kesehatan Diri


Informasi Kesehatan Diri Gadis


Data diri memang penting buat kita, tapi data seputar kesehatan rasanya nggak kepikiran, deh! Padahal ada informasi seputar kesehatan diri sendiri yang penting untuk diketahui. Data ini berguna saat kita menjalani pemeriksaan ke dokter, ingin ikutan donor darah atau saat menjalani kegiatan yang berkaitan dengan fisik. Info penting tersebut antara lain:
  • Golongan darah. Ini sering diminta, baik saat di rumah sakit/dokter maupun saat mengisi dokumen resmi.
  • Alergi. Kita harus tahu alergi yang pernah dialami (jika pernah mengalami) serta penyebabnya. Termasuk, alergi terhadap obat. Biasanya, hal ini akan ditanyakan oleh dokter sebelum ia memberikan obat. Jika tidak ditanya, sampaikan saja hal ini.
  • Sakit yang pernah dialami. Yaitu, penyakit yang tergolong berat. Seperti yang memerlukan waktu lama untuk pemulihan atau yang membuat kita harus rawat inap. Antara lain, gejala typus dan typus, Deman Berdarah Dengue (atau gejalanya), operasi amandel dan sebagainya.
  • Obat yang dikonsumsi. Jika ada obat dan vitamin yang sedang kita konsumsi, jangan lupakan nama/jenisnya. Seandainya kita diberikan obat/ vitamin tambahan dari dokter lain, misalnya dokter kulit atau dokter gigi, kita harus memberi tahu obat yang sedang kita konsumsi tersebut.
  • Riwayat kesehatan keluarga. Info ini bisa ditanyakan ke mama dan papa. Secara garis besar saja. Misalnya, apakah ada yang memiliki penyakit asma di keluarga atau alergi tertentu.
  • Makanan yang kita konsumsi. Jika kita ke dokter karena tidak enak badan/sakit, ingat-ingat apa saja yang kita konsumsi selama setidaknya 24 jam. Biasanya hal ini akan ditanyakan oleh dokter.